150 research outputs found

    Ampullary cancers harbor ELF3 tumor suppressor gene mutations and exhibit frequent WNT dysregulation

    Get PDF
    The ampulla of Vater is a complex cellular environment from which adenocarcinomas arise to form a group of histopathologically heterogenous tumors. To evaluate the molecular features of these tumors, 98 ampullary adenocarcinomas were evaluated and compared to 44 distal bile duct and 18 duodenal adenocarcinomas. Genomic analyses revealed mutations in the WNT signaling pathway among half of the patients and in all three adenocarcinomas irrespective of their origin and histological morphology. These tumors were characterized by a high frequency of inactivating mutations of ELF3, a high rate of microsatellite instability, and common focal deletions and amplifications, suggesting common attributes in the molecular pathogenesis are at play in these tumors. The high frequency of WNT pathway activating mutation, coupled with small-molecule inhibitors of β-catenin in clinical trials, suggests future treatment decisions for these patients may be guided by genomic analysis

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment

    The Effect of Urban Street Gang Densities on Small Area Homicide Incidence in a Large Metropolitan County, 1994–2002

    Get PDF
    The presence of street gangs has been hypothesized as influencing overall levels of violence in urban communities through a process of gun–drug diffusion and cross-type homicide. This effect is said to act independently of other known correlates of violence, i.e., neighborhood poverty. To test this hypothesis, we independently assessed the impact of population exposure to local street gang densities on 8-year homicide rates in small areas of Los Angeles County, California. Homicide data from the Los Angeles County Coroners Office were analyzed with original field survey data on street gang locations, while controlling for the established covariates of community homicide rates. Bivariate and multivariate regression analyses explicated strong relationships between homicide rates, gang density, race/ethnicity, and socioeconomic structure. Street gang densities alone had cumulative effects on small area homicide rates. Local gang densities, along with high school dropout rates, high unemployment rates, racial and ethnic concentration, and higher population densities, together explained 90% of the variation in local 8-year homicide rates. Several other commonly considered covariates were insignificant in the model. Urban environments with higher densities of street gangs exhibited higher overall homicide rates, independent of other community covariates of homicide. The unique nature of street gang killings and their greater potential to influence future local rates of violence suggests that more direct public health interventions are needed alongside traditional criminal justice mechanisms to combat urban violence and homicides

    Acceptability of prison-based take-home naloxone programmes among a cohort of incarcerated men with a history of regular injecting drug use

    Get PDF
    Background: Take-home naloxone (THN) programmes are an evidence-based opioid overdose prevention initiative. Elevated opioid overdose risk following prison release means release from custody provides an ideal opportunity for THN initiatives. However, whether Australian prisoners would utilise such programmes is unknown. We examined the acceptability of THN in a cohort of male prisoners with histories of regular injecting drug use (IDU) in Victoria, Australia. Methods: The sample comprised 380 men from the Prison and Transition Health (PATH) Cohort Study; all of whom reported regular IDU in the 6 months prior to incarceration. We asked four questions regarding THN during the pre-release baseline interview, including whether participants would be willing to participate in prison-based THN. We describe responses to these questions along with relationships between before- and during-incarceration factors and willingness to participate in THN training prior to release from prison. Results: Most participants (81%) reported willingness to undertake THN training prior to release. Most were willing to resuscitate a friend using THN if they were trained (94%) and to be revived by a trained peer (91%) using THN. More than 10 years since first injection (adjusted odds ratio [AOR] 2.22, 95%CI 1.03-4.77), having witnessed an opioid overdose in the last 5 years (AOR 2.53, 95%CI 1.32-4.82), having ever received alcohol or other drug treatment in prison (AOR 2.41, 95%CI 1.14-5.07) and injecting drugs during the current prison sentence (AOR 4.45, 95%CI 1.73-11.43) were significantly associated with increased odds of willingness to participate in a prison THN programme. Not specifying whether they had injected during their prison sentence (AOR 0.37, 95%CI 0.18-0.77) was associated with decreased odds of willingness to participate in a prison THN training. Conclusion: Our findings suggest that male prisoners in Victoria with a history of regular IDU are overwhelmingly willing to participate in THN training prior to release. Factors associated with willingness to participate in prison THN programmes offer insights to help support the implementation and uptake of THN programmes to reduce opioid-overdose deaths in the post-release period

    Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.

    Get PDF
    Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
    corecore